How do you convert xy=x-2y-3y^2 into a polar equation?

1 Answer
Jun 6, 2017

The polar equation is r=(costheta-2sintheta)/(sinthetacostheta+3sin^2theta)

Explanation:

To convert from rectangular coordinates (x,y) to polar coordinates (r,theta), we apply the following equations

x=rcostheta

y=rsintheta

Therefore,

xy=x-2y-3y^2

rcostheta*rsintheta=rcostheta-2rsintheta-3r^2sin^2theta

r^2costhetasintheta=rcostheta-2rsintheta-3r^2sin^2theta

As r!=0, we divide by r

rcosthetasintheta=costheta-2sintheta-3rsin^2theta

rsinthetacostheta+3rsin^2theta=costheta-2sintheta

r(sinthetacostheta+3sin^2theta)=costheta-2sintheta

So,

r=(costheta-2sintheta)/(sinthetacostheta+3sin^2theta)