How do you convert y= -2x^2+3xy-4 y=2x2+3xy4 into a polar equation?

2 Answers
Oct 11, 2016

We know the relations

x=rcostheta and y =rsinthetax=rcosθandy=rsinθ

Again x^2+y^2=r^2x2+y2=r2

where r and thetaθ are the polar coordinate of a point having rectangular coordinate (x,y)(x,y)

The given equation in rectanglar form is

y=-2x^2+3xy-4y=2x2+3xy4

=>rsintheta=-2r^2cos^2theta+3r^2sinthetacostheta-4rsinθ=2r2cos2θ+3r2sinθcosθ4

=>rsintheta+2r^2cos^2theta-3r^2sinthetacostheta+4=0rsinθ+2r2cos2θ3r2sinθcosθ+4=0

This is the polar form of the given equation.

Oct 11, 2016

Substitute rcos(theta)rcos(θ) for xx and rsin(theta)rsin(θ) for yy:
r = (-sin(theta) +-sqrt(sin^2(theta) + 16(3cos(theta)sin(theta) - 2cos^2(theta))))/((6cos(theta)sin(theta) - 4cos^2(theta)))r=sin(θ)±sin2(θ)+16(3cos(θ)sin(θ)2cos2(θ))(6cos(θ)sin(θ)4cos2(θ))

Explanation:

Substitute rcos(theta)rcos(θ) for xx and rsin(theta)rsin(θ) for yy:

rsin(theta) = -2r^2cos^2(theta) + 3r^2cos(theta)sin(theta) - 4rsin(θ)=2r2cos2(θ)+3r2cos(θ)sin(θ)4

r^2(3cos(theta)sin(theta) - 2cos^2(theta)) - rsin(theta) - 4r2(3cos(θ)sin(θ)2cos2(θ))rsin(θ)4

This a quadratic of the form ar^2 + br + car2+br+c where a = (3cos(theta)sin(theta) - 2cos^2(theta))a=(3cos(θ)sin(θ)2cos2(θ)), b = -sin(theta)b=sin(θ), and c = -4c=4

Using the quadratic formula, r = (-b +-sqrt(b^2 - 4(a)(c)))/(2a)r=b±b24(a)(c)2a:

r = (-sin(theta) +-sqrt(sin^2(theta) + 16(3cos(theta)sin(theta) - 2cos^2(theta))))/((6cos(theta)sin(theta) - 4cos^2(theta)))r=sin(θ)±sin2(θ)+16(3cos(θ)sin(θ)2cos2(θ))(6cos(θ)sin(θ)4cos2(θ))