How do you convert y=2y^2-x^2+6xy y=2y2x2+6xy into a polar equation?

1 Answer
Mar 3, 2018

r=sintheta/(2-3cos^2theta+3sin2theta)r=sinθ23cos2θ+3sin2θ

Explanation:

The relation between Cartesian coordinates (x,y)(x,y) and polar coordinates (r,theta)(r,θ) is given by

x=rcosthetax=rcosθ, y=rsinthetay=rsinθ and x^2+y^2=r^2x2+y2=r2

Hence we can write y=2y^2-x^2+6xyy=2y2x2+6xy as

rsintheta=2r^2sin^2theta-r^2cos^2theta+6r^2sinthetacosthetarsinθ=2r2sin2θr2cos2θ+6r2sinθcosθ

or sintheta=r(2sin^2theta-cos^2theta+6sinthetacostheta)sinθ=r(2sin2θcos2θ+6sinθcosθ)

or r=sintheta/(2sin^2theta-cos^2theta+6sinthetacostheta)r=sinθ2sin2θcos2θ+6sinθcosθ

= sintheta/(2-3cos^2theta+3sin2theta)sinθ23cos2θ+3sin2θ