How do you convert y=(3x-2y)^2-x^2y -5y^2 y=(3x2y)2x2y5y2 into a polar equation?

1 Answer
Jul 2, 2016

r^2cos^2thetasintheta+r(6sin2theta+10sin^2theta-9)+sintheta=0r2cos2θsinθ+r(6sin2θ+10sin2θ9)+sinθ=0

Explanation:

For converting a equation with Cartesian coordinates into a polar equation, one can use the relations x=rcosthetax=rcosθ and y=rsinthetay=rsinθ

Hence, y=(3x-2y)^2-x^2y-5y^2y=(3x2y)2x2y5y2 can be written as

rsintheta=(3rcostheta-2rsintheta)^2-(rcostheta)^2(rsintheta)-5(rsintheta)^2rsinθ=(3rcosθ2rsinθ)2(rcosθ)2(rsinθ)5(rsinθ)2 or

rsintheta=9r^2cos^2theta+4r^2sin^2theta-12r^2sinthetacostheta-r^3cos^2thetasintheta-5r^2sin^2thetarsinθ=9r2cos2θ+4r2sin2θ12r2sinθcosθr3cos2θsinθ5r2sin2θ

or rsintheta=9r^2(1-sin^2theta)-r^2sin^2theta-6r^2sin2theta-r^3cos^2thetasinthetarsinθ=9r2(1sin2θ)r2sin2θ6r2sin2θr3cos2θsinθ

or sintheta=9r-10rsin^2theta-6rsin2theta-r^2cos^2thetasinthetasinθ=9r10rsin2θ6rsin2θr2cos2θsinθ

or r^2cos^2thetasintheta+r(6sin2theta+10sin^2theta-9)+sintheta=0r2cos2θsinθ+r(6sin2θ+10sin2θ9)+sinθ=0