How do you convert y=3x-x^2y=3xx2 into polar form?

2 Answers
Feb 12, 2016

x= r cos(theta), y = r sin(theta)x=rcos(θ),y=rsin(θ). Answer is r = sec(theta) ( 3 - tan(theta))r=sec(θ)(3tan(θ)).

Explanation:

The equation in rectangular form represents a parabola with vertex at (3/2, 9/4) and axis along negative y\axis. The parabola does not pass through the origin. So, r is never 0.

Feb 12, 2016

r = sectheta(3- tantheta ) r=secθ(3tanθ)

Explanation:

using the formulae that links Cartesian to Polar coordinates.

• x = rcostheta x=rcosθ

• y = rsintheta y=rsinθ

the question can then be written as:

rsintheta = 3rcostheta - r^2cos^2theta rsinθ=3rcosθr2cos2θ

hence r^2cos^2theta = 3rcostheta - rsintheta = r(3costheta - sintheta)r2cos2θ=3rcosθrsinθ=r(3cosθsinθ)

(divide both sides by r )

hence rcos^2theta =3 costheta - sintheta rcos2θ=3cosθsinθ

rArr r =( 3costheta -sintheta)/cos^2theta = 3costheta/cos^2theta - sintheta/cos^2theta r=3cosθsinθcos2θ=3cosθcos2θsinθcos2θ

= 3/costheta - tantheta/costheta = 3sectheta - tanthetasectheta=3cosθtanθcosθ=3secθtanθsecθ

rArr sectheta (3 - tantheta ) secθ(3tanθ)