How do you convert y=-y^2-3x^2-xy into a polar equation?

1 Answer
May 26, 2018

r=-(sintheta)/(sin^2theta+3cos^2theta+costhetasintheta)

Explanation:

Rewrite as:
y^2+3x^2+xy=-y

Substitute in:
x=rcostheta
y=rsintheta

(rsintheta)^2+3(rcostheta)^2+(rcostheta)(rsintheta)=-rsintheta

r^2(sintheta)^2+3r^2(costheta)^2+r^2(costhetasintheta)=-rsintheta

Divide both sides by r

r(sintheta)^2+3r(costheta)^2+r(costhetasintheta)=-sintheta

Factorise out r:
r(sin^2theta+3cos^2theta+costhetasintheta)=-sintheta

Make r the subject:
r=-(sintheta)/(sin^2theta+3cos^2theta+costhetasintheta)