How do you derive first order half life?

1 Answer
Feb 5, 2017

You can always start from the first-order rate law:

r(t) = k[A] = -(d[A])/(dt)r(t)=k[A]=d[A]dt

for the reaction:

A -> BAB

Separate variables:

-kdt = 1/([A])d[A]kdt=1[A]d[A]

Integrate from the initial to the final state. It is convenient to set t_0 = 0t0=0.

-int_(0)^(t)kdt = int_([A]_0)^([A])d[A]t0kdt=[A][A]0d[A]

-(kt - k*0) = ln[A] - ln[A]_0(ktk0)=ln[A]ln[A]0

=> ln[A] - ln[A]_0 = -ktln[A]ln[A]0=kt

=> ln\frac([A])([A]_0) = -ktln[A][A]0=kt

For the half-life, at time t = t_"1/2"t=t1/2, the concentration of AA dropped to 1/2[A]_012[A]0. Therefore:

ln\frac(1/2cancel([A]_0))(cancel([A]_0)) = -kt_"1/2"

ln (1/2) = -kt_"1/2"

-ln (1/2) = kt_"1/2"

ln (1/2)^(-1) = kt_"1/2"

ln 2 = kt_"1/2"

Therefore:

color(blue)(t_"1/2" = ln2/k)