How do you derive first order half life?
1 Answer
Feb 5, 2017
You can always start from the first-order rate law:
r(t) = k[A] = -(d[A])/(dt)r(t)=k[A]=−d[A]dt
for the reaction:
A -> BA→B
Separate variables:
-kdt = 1/([A])d[A]−kdt=1[A]d[A]
Integrate from the initial to the final state. It is convenient to set
-int_(0)^(t)kdt = int_([A]_0)^([A])d[A]−∫t0kdt=∫[A][A]0d[A]
-(kt - k*0) = ln[A] - ln[A]_0−(kt−k⋅0)=ln[A]−ln[A]0
=> ln[A] - ln[A]_0 = -kt⇒ln[A]−ln[A]0=−kt
=> ln\frac([A])([A]_0) = -kt⇒ln[A][A]0=−kt
For the half-life, at time
ln\frac(1/2cancel([A]_0))(cancel([A]_0)) = -kt_"1/2"
ln (1/2) = -kt_"1/2"
-ln (1/2) = kt_"1/2"
ln (1/2)^(-1) = kt_"1/2"
ln 2 = kt_"1/2"
Therefore:
color(blue)(t_"1/2" = ln2/k)