How do you describe the concavity of the graph and find the points of inflection (if any) for f(x) = x^3 - 3x + 2f(x)=x3−3x+2?
1 Answer
The function has a minimum at >
The function has a maximum at >
Explanation:
Given -
y=x^3-3x+2y=x3−3x+2
dy/dx=3x^2-3dydx=3x2−3
(d^2x)/(dx^2)=6xd2xdx2=6x
dy/dx=0 => 3x^2-3=0dydx=0⇒3x2−3=0
3x^2=33x2=3
x^2=3/3=1x2=33=1
sqrt(x^2)=+-sqrt1√x2=±√1
x=1x=1
x=-1x=−1
At >
(d^2x)/(dx^2)=6(1)=6>0d2xdx2=6(1)=6>0
At >
Hence the function has a minimum at >
At >
(d^2x)/(dx^2)=6(-1)=-6<0d2xdx2=6(−1)=−6<0
At >
Hence the function has a maximum at >
graph{3x^3-3x+2 [-10, 10, -5, 5]}
Watch this lesson also'on Maxima / Minima'