How do you determine if #2 sin x cos x# is an even or odd function?

1 Answer
Oct 16, 2016

You have to use the definitions of even and odd functions

Explanation:

A function #f# is even if it satisfies #f(-x)=f(x)#. For example #cos(-x)=cosx#, so #cosx# is even

A function #f# is odd if it satisfies #f(-x)=-f(x)#. For example #sin(-x)=-sinx#, so #sinx# is odd

Lets see the given function #f(x)=2 sinx cosx#, and evaluate #f(-x)#

#f(-x)= 2 sin(-x) cos(-x)=2*(-sinx) * cos(x)#, using the equalities above.

Then, #f(-x)=- 2sinx cosx=-f(x)#, and so the function given is odd