How do you determine if #f(x) = 2^x + 2^-x# is an even or odd function?
1 Answer
Apr 1, 2016
but not an odd function.
Explanation:
even function definition
#f(x)=2^color(red)(x)+2^color(blue)(-x)#
#f(-x)=2^color(red)(-x)+2^color(blue)(-(-x))=color(blue)(2^(x)+2^color(red)(-x)#
#f(x)=f(-x) rArr f(x)# is even.
odd function definition
if
#x=1#
#f(-x=-1)=2^(-1)+2^-(-1)=1/2+2 =2 1/2#
#-f(x=1) = -(2^1+2^-1) = -2 1/2#
#f(-x)!=-f(x)# (when#x=1# )#rArr f(x)# is not an odd function