How do you determine if #p( x) = -(x-4)(x-2)(x+4)(x+2)# is an even or odd function?

1 Answer
Aug 21, 2016

#p(x)# is even.

Explanation:

To identify whether a function #f(x)# is odd or even find out #f(-x)#. If #f(-x)=f(x)#, the function is even and if #f(-x)=-f(x)#, the function is odd.

Here, as #p(x)=-(x-4)(x-2)(x+4)(x+2)#

#p(-x)=-(-x-4)(-x-2)(-x+4)(-x+2)#

= #-(-(x+4))(-(x+2))(-(x-4))(-(x-2))#

= #-(x+4)((x+2)(x-4)(x-2)#

or #p(-x)=-(x-4)(x-2)(x+4)(x+2)=p(x)#

Hence, #p(x)# is even.