How do you determine p(c) given p(x)=x^4+x^3-6x^2-7x-7p(x)=x4+x36x27x7 and c=-sqrt7c=7?

2 Answers
Jul 6, 2017

-1414

Explanation:

Grab your calculator... Because this is a REAL doozy....

Since:
c=-sqrt7c=7
And:
p(x) =x^4+x^3-6x^2-7x-7p(x)=x4+x36x27x7

Substitute
c=-sqrt7c=7
Into p(x) p(x), which is:
p(x)= (-sqrt7)^4+(-sqrt7)^3-6(-sqrt7)^2 - 7(-sqrt7)-7 p(x)=(7)4+(7)36(7)27(7)7

Simplifying gives

(-7)^2-(7)^(3/2)-6(7)-7(7)^(1/2) - 7(7)2(7)326(7)7(7)127

Using a calculator,
7^(3/2)=18.520732=18.520

And
7^(1/2) = 2.646712=2.646

Solving all the stuffs
49-18.520-42+7(2.646)-74918.52042+7(2.646)7

49-42-749427

=0=0

Yay! DONE!

Jul 6, 2017

00

Explanation:

What we can do is plug in the value -sqrt77 in for each xx:

p(c) = (-sqrt7)^4 + (-sqrt7)^3 - 6(-sqrt7)^2 - 7(-sqrt7) - 7p(c)=(7)4+(7)36(7)27(7)7

= 49 - 7sqrt7 - 42 + 7sqrt7 - 7=497742+777

= 49 - 42 - 7 = color(blue)(0=49427=0

Thus, the value "-sqrt77" is a zero of this polynomial function.