How do you determine the parametric equations of the path of a particle that travels the circle: #(x−3)^2+(y−1)^2=9# on a time interval of #0<=t<=2#?

1 Answer
Jul 5, 2016

#x =3+ 3 cos pi t #
#y =1 + 3 sin pi t#

Explanation:

#(x−3)^2+(y−1)^2=9#

which is a circle that we can simplify as follows:
#u^2+v^2=3^3#

where #u = x-3, v = y -1#

so

#u = 3 cos psi, v = 3 sin psi implies u^2 + v^2 = 3^3#

#x-3 = 3 cos psi, y-1 = 3 sin psi#

#implies x =3+ 3 cos psi, y =1 + 3 sin psi#

in terms of periodicity, we can say that #psi = omega t# where #omega = (2 pi) /T#

if the period T is #t = 2#, then #omega = (2 pi) /2 = pi#

So
#x =3+ 3 cos pi t #
#y =1 + 3 sin pi t#