How do you determine the remaining zeroes for #h(x)=3x^4+5x^3+25x^2+45x-18# if 3i is a zero?

1 Answer
Apr 15, 2018

See below

Explanation:

If #3i# is a zero, then #-3i# must be a zero, so using those zeroes, I can write these factors:
#(x-3i)(x+3i) = (x^2+9)#

Now we can use long division to divide #3x^4+5x^3+25x^2+45x-18# by #(x^2+9)# to get #3x^2+5x-2#

#color(white)(mmmmmmm)3x^2+5x-2#
#x^2+0x+9|3x^4+5x^3+25x^2+45x-18#
#color(white)(mmmmm)-(3x^4+0x^3+27x^2)#
#color(white)(mmmmmmmmmm)5x^3-2x^2+45x#
#color(white)(mmmmmmmm)-(5x^3+0x^2+45x)#
#color(white)(mmmmmmmmmmmm) -2x^2-18#
#color(white)(mmmmmmmmmm)-(-2x^2-18)#
#color(white)(mmmmmmmmmmmmmmmmm)0#

Now factor:
#3x^2+5x-2#
#3x^2+6x-x-2#
#3x(x+2)-1(x+2)#
#(3x-1)(x+2)#

#x=-2, 1/3, +-3i#

graph{3x^4+5x^3+25x^2+45x-18 [-10, 10, -5, 5]}