We have:
#a_n =((n-1)/n)^n#
this is a positive number so we can take the logarithm:
#ln a_n = ln ((n-1)/n)^n = nln ((n-1)/n)#
Now if:
#lim_(x->oo) xln((x-1)/x)#
exists is must be the same as:
#lim_(n->oo) ln a_n = lim_(n->oo) nln ((n-1)/n)#
This limit in the indeterminate form #0*oo# so we have to transform it to apply l'Hospital's rule:
#lim_(x->oo) xln((x-1)/x) = lim_(x->oo) (ln((x-1)/x) )/(1/x) = lim_(x->oo) (d/dx ln((x-1)/x) )/(d/dx 1/x) #
Now:
# d/dx ln((x-1)/x) = d/dx (ln(x-1) - lnx) =1/(x-1) -1/x = 1/(x(x-1))#
#d/dx 1/x = -1/x^2#
so:
#lim_(x->oo) xln((x-1)/x) = lim_(x->oo) (1/(x(x-1)))/(-1/x^2) = lim_(x->oo) -x^2/(x(x-1)) = -1#
and we can conclude that:
#lim_(n->oo) ln a_n = -1#
But since #ln x # is a continuous function:
# lim_(n->oo) ln a_n = ln ( lim_(n->oo) a_n) = -1#
which implies:
#lim_(n->oo) a_n =1/e#