How do you differentiate 1/cos(x) = x/(x-y^2-y)?

1 Answer
Nov 3, 2016

dy/dx=-(-y^2-y-(x-y^2-y)^2sinxsec^2x)/(2xy+x) or dy/dx=(y^2+y+(x-y^2-y)^2sinxsec^2x)/(2xy+x)

Explanation:

1/cosx = x/(x-y^2-y)

First put everything on one side

0=x/(x-y^2-y)-1/cosx

Then find the derivative with respect to x let's call it f_x while holding y constant

f_x=((x-y^2-y)-x)/(x-y^2-y)^2+1/cos^2x*-sinx

=(x-y^2-y-x)/(x-y^2-y)^2-sinxsec^2x

=(-y^2-y-(x-y^2-y)^2sinxsec^2x)/(x-y^2-y)^2

Next find the derivative with respect to y call it f_yand hold x contant

f_y=(-x(-2y-1))/(x-y^2-y)^2

=(2xy+x)/(x-y^2-y)^2

To write your final answer use the formula dy/dx=-f_x/f_y

dy/dx=-((-y^2-y-(x-y^2-y)^2sinxsec^2x)/(x-y^2-y)^2)/((2xy+x)/(x-y^2-y)^2)

dy/dx=-(-y^2-y-(x-y^2-y)^2sinxsec^2x)/(2xy+x)

dy/dx=(y^2+y+(x-y^2-y)^2sinxsec^2x)/(2xy+x)