How do you differentiate #12=ye^(x-y^3)+e^x-y#?
1 Answer
Jun 1, 2017
Explanation:
#d/dx12 = d/dx(ye^(x-y^3)+e^x-y)#
#0 = dy/dxe^(x-y^3) + ye^(x-y^3)(1-3y^2*dy/dx) + e^x-dy/dx#
#0 = dy/dxe^(x-y^3) + ye^(x-y^3) - 3y^3e^(x-y^3)dy/dx + e^x - dy/dx#
#-e^x-ye^(x-y^3) = dy/dx (e^(x-y^3)-3y^3e^(x-y^3)-1)#
#(-e^x-ye^(x-y^3))/(e^(x-y^3)-3y^3e^(x-y^3)-1) = dy/dx#