How do you differentiate 12=ye^(x-y^3)+e^x-y12=yex−y3+ex−y?
1 Answer
Jun 1, 2017
Explanation:
d/dx12 = d/dx(ye^(x-y^3)+e^x-y)ddx12=ddx(yex−y3+ex−y)
0 = dy/dxe^(x-y^3) + ye^(x-y^3)(1-3y^2*dy/dx) + e^x-dy/dx0=dydxex−y3+yex−y3(1−3y2⋅dydx)+ex−dydx
0 = dy/dxe^(x-y^3) + ye^(x-y^3) - 3y^3e^(x-y^3)dy/dx + e^x - dy/dx0=dydxex−y3+yex−y3−3y3ex−y3dydx+ex−dydx
-e^x-ye^(x-y^3) = dy/dx (e^(x-y^3)-3y^3e^(x-y^3)-1)−ex−yex−y3=dydx(ex−y3−3y3ex−y3−1)
(-e^x-ye^(x-y^3))/(e^(x-y^3)-3y^3e^(x-y^3)-1) = dy/dx−ex−yex−y3ex−y3−3y3ex−y3−1=dydx