How do you differentiate 12=ye^(x-y^3)+e^x-y12=yexy3+exy?

1 Answer
Jun 1, 2017

(-e^x-ye^(x-y^3))/(e^(x-y^3)-3y^3e^(x-y^3)-1) = dy/dxexyexy3exy33y3exy31=dydx

Explanation:

Use implicit differentiation:

d/dx12 = d/dx(ye^(x-y^3)+e^x-y)ddx12=ddx(yexy3+exy)

0 = dy/dxe^(x-y^3) + ye^(x-y^3)(1-3y^2*dy/dx) + e^x-dy/dx0=dydxexy3+yexy3(13y2dydx)+exdydx

0 = dy/dxe^(x-y^3) + ye^(x-y^3) - 3y^3e^(x-y^3)dy/dx + e^x - dy/dx0=dydxexy3+yexy33y3exy3dydx+exdydx

-e^x-ye^(x-y^3) = dy/dx (e^(x-y^3)-3y^3e^(x-y^3)-1)exyexy3=dydx(exy33y3exy31)

(-e^x-ye^(x-y^3))/(e^(x-y^3)-3y^3e^(x-y^3)-1) = dy/dxexyexy3exy33y3exy31=dydx