How do you differentiate #2=ye^(x-y^3)+xe^(x-y)#?

1 Answer

#y'=(y*e^(x-y^3)+x*e^(x-y)+e^(x-y))/(3y^3*e^(x-y^3)-e^(x-y^3)+x*e^(x-y))#

Explanation:

Use Implicit differentiation

from the given #2=y*e^(x-y^3)+x*e^(x-y)#

#d/dx(2)=d/dx(y*e^(x-y^3)+x*e^(x-y))#

#0=y*e^(x-y^3)*(1-3y^2*y')+e^(x-y^3)*y'+x*e^(x-y)*(1-y')+e^(x-y)*1#

Solving for #y'# in terms of x and y then simplification

#y'=(y*e^(x-y^3)+x*e^(x-y)+e^(x-y))/(3y^3*e^(x-y^3)-e^(x-y^3)+x*e^(x-y))#

I hope the explanation is useful....God bless...