How do you differentiate -3=e^(x^2-y^2)/(x^2-2y)?

1 Answer
Jan 25, 2017

y' = (2x ( e^(x^2-y^2) + 3))/(6 + 2y e^(x^2-y^2) )

Explanation:

Firstly, simplify by re-writing as:

-3(x^2-2y)=e^(x^2-y^2)

Then implicitly differentiate wrt x.

-6x +6y' =(2x - 2y y')e^(x^2-y^2)

And re-order:
6y' + 2y y'e^(x^2-y^2) =2x e^(x^2-y^2) + 6x

y' (6 + 2y e^(x^2-y^2) ) =2x ( e^(x^2-y^2) + 3)

implies y' = (2x ( e^(x^2-y^2) + 3))/(6 + 2y e^(x^2-y^2) )