How do you differentiate #3xy^2+cosy^2=2x^3+5#?

1 Answer

#dy/dx=(3(2x^2-y^2))/(2y(3x-siny^2))#

Explanation:

#d/dx(3xy^2+cosy^2)=d/dx(2x^3+5)#

#d/dx3xy^2+d/dxcosy^2=d/dx2x^3+d/dx5#

#[d/dx3xy^2]+d/dxcosy^2=d/dx2x^3+d/dx5#

#[3x2ydy/dx+y^2 3]+(-2ysiny^2)dy/dx=6x^2+0#
differentiate of #siny^2# and #sin^2y# is different answer

#6xydy/dx+3y^2 -(2ysiny^2) dy/dx=6x^2#

#dy/dx(6xy -2ysiny^2) =6x^2-3y^2#
#dy/dx=(6x^2-3y^2)/(6xy -2ysiny^2)=(3(2x^2-y^2))/(2y(3x-siny^2))#