How do you differentiate 3xy^2+cosy^2=2x^3+5?

1 Answer
Jan 12, 2017

dy/dx=(3(2x^2-y^2))/(2y(3x-siny^2))

Explanation:

d/dx(3xy^2+cosy^2)=d/dx(2x^3+5)

d/dx3xy^2+d/dxcosy^2=d/dx2x^3+d/dx5

[d/dx3xy^2]+d/dxcosy^2=d/dx2x^3+d/dx5

[3x2ydy/dx+y^2 3]+(-2ysiny^2)dy/dx=6x^2+0
differentiate of siny^2 and sin^2y is different answer

6xydy/dx+3y^2 -(2ysiny^2) dy/dx=6x^2

dy/dx(6xy -2ysiny^2) =6x^2-3y^2
dy/dx=(6x^2-3y^2)/(6xy -2ysiny^2)=(3(2x^2-y^2))/(2y(3x-siny^2))