How do you differentiate e^x+e^y=e^(x+y)?

2 Answers
Jun 8, 2016

(dy)/(dx)=(e^x(e^y-1))/(e^y(1-e^x))

Explanation:

Differentiating e^x+e^y=e^(x+y)

e^x+e^y(dy)/(dx)=e^(x+y)(1+(dy)/(dx))

or e^x+e^y(dy)/(dx)=e^(x+y)+e^(x+y)(dy)/(dx)

or e^y(dy)/(dx)-e^(x+y)(dy)/(dx)=e^(x+y)-e^x

or (e^y-e^(x+y))(dy)/(dx)=(e^(x+y)-e^x)

or (dy)/(dx)=(e^(x+y)-e^x)/(e^y-e^(x+y))=(e^x(e^y-1))/(e^y(1-e^x))

Jul 13, 2018

dy/dx=-e^(y-x).

Explanation:

e^x+e^y=e^(x+y)=e^x*e^y.

:. (e^x+e^y)/(e^x*e^y)=1.

:. e^x/(e^x*e^y)+e^y/(e^x*e^y)=1.

:. e^-y+e^-x=1.

Diff.ing w.r.t. x, we get,

d/dx(e^-y)+d/dx(e^-x)=d/dx(1).

:. d/dy(e^-y)*d/dx(-y)+e^-x*d/dx(-x)=0......[because," the Chain Rule]".

:. e^-y(-dy/dx)+e^-x*-1=0.

:. -dy/dx=e^-x/e^-y=e^(y-x).

rArr dy/dx=-e^(y-x), as Respected Shwetank Mauria has

readily derived!