How do you differentiate f(x)=3-7x^3+3x^7?

1 Answer
Nov 2, 2016

Therefore, differentiating f(x)=3-7x^3+3x^7. w.r.t x, comes to be -21x^2+21x^6. (answer).

Explanation:

Let, y=f(x)=3-7x^3+3x^7.

:. Differentiating y w.r.t x is,

d/(dx)(y)=dy/dx=d/(dx)(3-7x^3+3x^7).
:.dy/dx=0-7*3*x^(3-1)+3*7*x^(7-1).
:.dy/dx=-21x^2+21x^6.

Therefore, differentiating y w.r.t x, comes to be -21x^2+21x^6. (answer).