How do you differentiate f(x) = (3x-2)^4 using the chain rule?

2 Answers
Nov 24, 2015

f'(x)=12(3x-2)^3

Explanation:

According to the Chain Rule:

f'(x)=4(3x-2)^3*d/dx[3x-2]

f'(x)=4(3x-2)^3*3

f'(x)=12(3x-2)^3

Nov 24, 2015

dy/dx=12(3x-2)^3

Explanation:

Given -

y=(3x-2)^4

Let U=3x-2
Then-

y= U^4
dy/(dU)=4U^3

(dU)/dx=3

dy/d=dy/(dU).(dU)/dx

dy/dx=4(U)^3(3)

dy/dx=4(3x-2)^3(3)

dy/dx=12(3x-2)^3