How do you differentiate f(x)= (9-x)(5/(x^2 -4))f(x)=(9x)(5x24) using the product rule?

2 Answers
May 26, 2018

f'(x)=5*(x^2-18x+4)/((x-2)^2*(x+2)^2)

Explanation:

After the product rule
(uv)'=u'v+uv'
we get

f'(x)=-5/(x^2-4)+(9-x)*(-5)*(x^2-4)^(-2)*2*x

which simplifies to
f'(x)=5*(x^2-18x+4)/((x-2)^2*(x+2)^2)

May 26, 2018

f'(x)=(5(x^2 -18x+4))/(x^2 -4)^2

Explanation:

f(x)= (9-x)(5/(x^2 -4))

Apply product rule,

f'(x)= [d/dx(9-x)] (5/(x^2 -4))+[d/dx(5/(x^2 -4))] (9-x)

Differentiate inner terms,

f'(x)=(-1) (5/(x^2 -4))+(-(10x)/(x^2 -4)^2) (9-x)

Simplify,

f'(x)=-5/(x^2 -4)-(10x(9-x))/(x^2 -4)^2

Common denominator,

f'(x)=-(5(x^2 -4))/(x^2 -4)^2-(10x(9-x))/(x^2 -4)^2

Simplify,

f'(x)=-(5x^2 -20)/(x^2 -4)^2-(90x-10x^2)/(x^2 -4)^2

Combine,

f'(x)=(-5x^2 +20-90x+10x^2)/(x^2 -4)^2

Simplify,

f'(x)=(5x^2 -90x+20)/(x^2 -4)^2

Factorise,

f'(x)=(5(x^2 -18x+4))/(x^2 -4)^2