How do you differentiate #f(x)=(cosx+1)(-x^2-3e^x)# using the product rule?
1 Answer
Mar 10, 2016
Explanation:
using the
#color(blue)" Product rule "# If f(x) = g(x).h(x) then f'(x) = g(x).h'(x) + h(x).g'(x)
#"----------------------------------------------------------------"# here g(x)
#= cosx + 1 rArr g'(x) = -sinx # and
#h(x) = (-x^2-3e^x) rArr h'(x) = -2x-3e^x #
#"-----------------------------------------------------------------"# now substitute these results into f'(x)
f'(x)
#=(cosx+1)(-2x-3e^x)-sinx(x^2-3e^x)#