How do you differentiate #f(x)=sinx-4cos(5x)#?

3 Answers

#f'(x)=\cos x+20\sin(5x)#

Explanation:

The given function:

#f(x)=\sin x-4\cos(5x)#

Differentiating above function w.r.t. #x# using chain rule as follows

#d/dxf(x)=d/dx(\sin x-4\cos(5x))#

#f'(x)=d/dx(\sin x)-4\d/dx (cos(5x))#

#f=cos x-4(-sin(5x))d/dx(5x)#

#=\cos x+4\sin(5x)(5)#

#=\cos x+20\sin(5x)#

Jul 23, 2018

#cos(x)+20sin(5x)#

Explanation:

#f(x)=sin(x)-4cos(5x)#

So

#f'(x)=cos(x)-4(-sin(5x) * 5)#

#f'(x)=cos(x)+20sin(5x)#

Hope it helps!

Jul 30, 2018

#cosx+20sin(5x)#

Explanation:

We essentially have the following:

#color(steelblue)(d/dx sinx)-color(purple)(d/dx 4cos(5x))#

What I have in blue evaluates to #cosx#. We now have

#cosx-4d/dxcolor(purple)(cos(5x))#

What I have in purple is a composite function with #f(x)=cosx# and #g(x)=5x#. We can find the derivative with the Chain Rule

#f'(g(x))*g'(x)#

We know:

#f(x)=cosx=>f'(x)=-sinx#
#g(x)=5x=>g'(x)=5#

We can plug this into the Chain Rule to get

#color(purple)(-5sin(5x))#

We now have the following:

#cosx-4color(purple)((-5sin(5x))#, which simplifies to

#cosx+20sin(5x)#

Hope this helps!