How do you differentiate f(x)=(tanx-1)/secx at x=pi/3?

1 Answer
Dec 17, 2016

(1 + sqrt(3))/2

Explanation:

Rewrite in sine and cosine.

f(x) = (sinx/cosx- 1)/(1/cosx)

f(x) = ((sinx - cosx)/cosx)/(1/cosx)

f(x) = sinx - cosx

We differentiate this using d/dx(sinx) = cosx and d/dx(cosx) = -sinx.

f'(x) = cosx - (-sinx)

f'(x) = cosx + sinx

We now evaluate f'(pi/3):

f'(pi/3) = cos(pi/3) + sin(pi/3)

f'(pi/3) = 1/2 + sqrt(3)/2

f'(pi/3) = (1 + sqrt(3))/2

Hopefully this helps!