How do you differentiate f(x)=(tanx-1)/secx at x=pi/3?
1 Answer
Dec 17, 2016
Explanation:
Rewrite in sine and cosine.
f(x) = (sinx/cosx- 1)/(1/cosx)
f(x) = ((sinx - cosx)/cosx)/(1/cosx)
f(x) = sinx - cosx
We differentiate this using
f'(x) = cosx - (-sinx)
f'(x) = cosx + sinx
We now evaluate
f'(pi/3) = cos(pi/3) + sin(pi/3)
f'(pi/3) = 1/2 + sqrt(3)/2
f'(pi/3) = (1 + sqrt(3))/2
Hopefully this helps!