How do you differentiate f(x)= (x^2+1)(5x^4+3^2+2x) using the product rule?

1 Answer
May 7, 2018

color(brown)(f'(x) = 30x^5 + 20x^3 + 6x^2 + 18x + 2

Explanation:

![mymathware.blogspot.inmymathware.blogspot.in)

f(x) = (x^2 + 1) * (5x^4 + 2x + 3^2)

Let " "u = ((x^2 + 1), v = (5x^4 + 2x + 9)

(du)/(dx) = (d/(dx)) (x^2 + 1) = 2x

(dv) / (dx) = d/(dx) (5x^4 + 2x + 9) = 20x^3 + 2

f'(x) = v (du)/(dx) + u (dv)/(dx)

f'(x) = (5x^4 + 2x + 9) * 2x + (x^2 + 1) * (20x^3 + 2)

=> 10x^5 + 4x^2 + 18x + 20x^5 + 2x^2 + 20x^3 + 2

color(brown)(=> 30x^5 + 20x^3 + 6x^2 + 18x + 2