How do you differentiate #g(x) = (5x^6 - 4)cos(5x)# using the product rule?
1 Answer
Feb 24, 2018
Explanation:
#"differentiate using "color(blue)"product/chain rule"#
#"given "g(x)=f(x)h(x)" then"#
#g'(x)=f(x)h'(x)+h(x)f'(x)larrcolor(blue)"product rule"#
#f(x)=5x^6-4rArrf'(x)=30x^5#
#h(x)=cos(5x)#
#rArrh'(x)=-sin(5x)xxd/dx(5x)=-5sin(5x)#
#rArrg'(x)=-5sin(5x)(5x^6-4)+30x^5cos(5x)#