How do you differentiate g(x) = sqrt(2x^2-1)cos3x using the product rule?

1 Answer

g' (x)=-3*sin (3x)sqrt(2x^2-1)+ (2x*cos 3x)/(sqrt(2x^2-1))

Explanation:

The formula for the product rule is

d/dx(uv)=u dv/dx+ v*du/dx

from the given g(x)=sqrt(2x^2-1)*cos 3x

We let u=sqrt(2x^2-1) and v=cos 3x

d/dx(uv)=u dv/dx+ v*du/dx

g' (x)=d/dx(sqrt(2x^2-1)*cos 3x)=(sqrt(2x^2-1)) d/dx(cos 3x)+ (cos 3x)*d/dxsqrt(2x^2-1)

g' (x)=
(sqrt(2x^2-1))*(-3 sin 3x)+ (cos 3x)*1/(2*sqrt(2x^2-1))*(4x-0)

g' (x)=-3*sin (3x)sqrt(2x^2-1)+ (2x*cos 3x)/(sqrt(2x^2-1))

God bless....I hope the explanation is useful.