How do you differentiate #g(x) = sqrt(x^2-x)sin2x# using the product rule?
↳Redirected from
"What is #log_e# of e?"
#g'(x)=(4(x^2-x)cos2x+(2x-1)sin2x)/(2sqrt(x^2-x))#
#"We know the "color(blue)"Product Rule :"#
#color(blue)(y=u*v=>(dy)/(dx)=u*(dv)/(dx)+v*(du)/(dx)#
Let, #u=sqrt(x^2-x) and v=sin2x#
#:.(du)/(dx)=1/(2sqrt(x^2-x))(2x-1)=(2x-1)/(2sqrt(x^2-x)#
#and (dv)/(dx)=2cos2x#
So,
#(dy)/(dx)=sqrt(x^2-x)*2cos2x+sin2x(2x-1)/(2sqrt(x^2-x))#
#g'(x)=(2(x^2-x)*2cos2x+(2x-1)sin2x)/(2sqrt(x^2-x)#
#g'(x)=(4(x^2-x)cos2x+(2x-1)sin2x)/(2sqrt(x^2-x))#