How do you differentiate #sin3x^2#?

1 Answer
Jun 21, 2016

#6xcos3x^2#

Explanation:

differentiate using the #color(blue)"chain rule"#

#d/dx[f(g(x))]=f'(g(x)).g'(x)........ (A)#
#"------------------------------------------"#
#f(g(x))=sin3x^2rArrf'(g(x))=cos3x^2#

#g(x)=3x^2rArrg'(x)=6x#
#"--------------------------------------------"#
Substitute these values into (A)

#rArrd/dx[sin3x^2]=6xcos3x^2#