Instead of the quotient rule, you could use the product rule.
#sin(3x)/(2x)=>sin(3x)(2x)^-1#
We use these rules:
Chain rule: #d/dx[f(g(x))]=f'(g(x))*g'(x)#
Product rule: #d/dx[f(x)*g(x)]=f'(x)*g(x)+f(x)*g'(x)#
Power rule: #d/dx[x^n]=nx^(n-1)# if #n# is a constant.
#d/dx[sin(x)]=cos(x)#
#=>d/dx[sin(3x)] ( 2x)^-1+sin(3x)*d/dx[(2x)^-1]#
#=>cos(3x)(d/dx[3x]) ( 2x)^-1+sin(3x)(-1*(2x)^(-1-1))*d/dx[2x]#
#=>cos(3x)(3) ( 2x)^-1+sin(3x)(-1)(2x)^(-2)*2#
#=>cos(3x)(3) 1/( 2x)+sin(3x)(-2)1/(2x)^(2)#
#=>(cos(3x)(3))/( 2x)+(sin(3x)(-cancel2))/(cancel4x^2)#
#=>(3cos(3x))/( 2x)*(x)/(x)+(-sin(3x))/(2x^2)#
#=>(3xcos(3x))/( 2x^2)+(-sin(3x))/(2x^2)#
#=>(3xcos(3x)-sin(3x))/(2x^2)#