How do you differentiate sqrtx(sinx+cosx)?

1 Answer

(\frac{1-2x}{2\sqrtx})\sin x+(\frac{1+2x}{2\sqrtx})\cos x

Explanation:

Differentiating given function: f(x)=\sqrtx(\sinx +\cosx ) w.r.t. x using product rule as follows

f'(x)=d/dx(\sqrtx(\sinx +\cosx ))

=\sqrtxd/dx(\sin x+\cos x)+(\sin x+\cos x)d/dx\sqrtx

=\sqrtx(\cos x-\sin x)+(\sin x+\cos x)1/{2\sqrtx}

=(\frac{1-2x}{2\sqrtx})\sin x+(\frac{1+2x}{2\sqrtx})\cos x