How do you differentiate (x-4)/(x^2+2)?

2 Answers
Dec 21, 2017

f'(x)=(-x^2+8x+2)/(x-4)^2

Explanation:

Apply the quotient rule which states:

f(x)=g(x)/(h(x))->f'(x)=(g'(x)h(x)-h'(x)g(x))/((g(x))^2)

Let

g(x)=x-4

h(x)=x^2+2

Thus,

g'(x)=1

h'(x)=2x

Now plugging into the formula:

f'(x)=((1)*(x^2+2)-(2x)(x-4))/(x-4)^2

Simplify:

f'(x)=((x^2+2)-(2x^2-8x))/(x-4)^2

f'(x)=(-x^2+8x+2)/(x-4)^2

Dec 21, 2017

(8x-x^2+2)/(x^2+2)^2

Explanation:

"differentiate using the "color(blue)"quotient rule"

"given "y=(g(x))/(h(x))" then"

dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"

g(x)=x-4rArrg'(x)=1

h(x)=x^2+2rArrh'(x)=2x

rArrd/dx((x-4)/(x^2+2))

=(x^2+2-2x(x-4))/(x^2+2)^2

=(8x-x^2+2)/(x^2+2)^2