How do you differentiate x^sqrt5+sqrt(5x)?

1 Answer
Nov 25, 2017

dy/dx=sqrt5*x^(sqrt5-1)+sqrt5/(2sqrtx).

Explanation:

d/dx{x^(sqrt5)+sqrt(5x)},

=d/dx{x^sqrt5}+d/dx{sqrt5*x^(1/2)},

=sqrt5*x^(sqrt5-1)+sqrt5*d/dx{x^(1/2)},

=sqrt5*x^(sqrt5-1)+sqrt5{1/2x^((1/2)-1)},

=sqrt5*x^(sqrt5-1)+sqrt5{1/2x^(-1/2)}.

rArr dy/dx=sqrt5*x^(sqrt5-1)+sqrt5/(2sqrtx).