How do you differentiate #y = 2 / [3sqrt(x^2 - 5x)] #? Calculus Basic Differentiation Rules Chain Rule 1 Answer Sihan Tawsik Jan 30, 2016 #(4x-10)/(3sqrt((x^2-5x)^3))# Explanation: Here, #y=2/(3sqrt(x^2-5x))# so, #(dy)/(dx)# #=d/(dx)(2/(3sqrt(x^2-5x)))# #=2/3d/(dx)(1/(sqrt(x^2-5x)))# #=2/3*1/((x^2-5x)^(3/2))d/(dx)(x^2-5x)# #=2/3*1/((x^2-5x)^(3/2))(2x-5)# #=(4x-10)/(3sqrt((x^2-5x)^3))# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1901 views around the world You can reuse this answer Creative Commons License