How do you differentiate #y cos x = 1 + sin (xy)#?

1 Answer
Aug 17, 2015

#dy/dx = (y [cos (xy) + sin x])/(cos x - x cos (xy))#

Explanation:

Always think of your chain, product and quotient rules when differentiating

#y cos x = 1 + sin (xy)#
Diff wrt #x#:
#dy/dx cos x - y sin x = cos (xy) [y + x dy/dx]# (apply your rules)
#dy/dx cos x - y sin x = y cos (xy) + x cos (xy) dy/dx# (simplify)
#dy/dx cos x - x cos (xy) dy/dx = y cos (xy) + y sin x# (collect #dy/dx#)
#dy/dx [cos x - x cos (xy)] = y [cos (xy) + sin x]# (factorise)
#dy/dx = (y [cos (xy) + sin x])/(cos x - x cos (xy))# VOILA