How do you differentiate # y = sin (ln(x)^2+2)# using the chain rule? Calculus Basic Differentiation Rules Chain Rule 1 Answer maganbhai P. Jul 30, 2018 #(dy)/(dx)=2/xlnx cos(ln(x)^2+2)# Explanation: Here , #y=sin(ln(x)^2+2)# Let , # y=sinu# , where, #color(red)(u=ln(x)^2+2# #=>(dy)/(du)=cosu and (du)/(dx)=2lnx*1/x=2/xlnx# Using Chain Rule: #color(blue)((dy)/(dx)=(dy)/(du)*(du)/(dx)# #:.(dy)/(dx)=cosu xx 2/xlnx=2/xlnxcosu# Subst. #color(red)(u=ln(x)^2+2# #:.(dy)/(dx)=2/xlnx cos(ln(x)^2+2)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 4309 views around the world You can reuse this answer Creative Commons License