How do you divide #(2x^4+7)div(x^2-1)# using long division?

1 Answer
Dec 15, 2016

The remainder is #=9# and the quotient is #=2x^2+2#

Explanation:

Let's do the long division

#color(white)(aaaa)##2x^4##color(white)(aaaa)##color(white)(aaaa)##+7##∣##x^2-1#

#color(white)(aaaa)##2x^4-2x^2##color(white)(aaaa)##color(white)(a)######2x^2+2#

#color(white)(aaaaa)##0+2x^2+7##color(white)(aaaa)#

#color(white)(aaaaaaa)##+2x^2-2##color(white)(aaaa)#

#color(white)(aaaaaaaaa)##+0+9##color(white)(aaaa)#

The remainder is #=9# and the quotient is #=2x^2+2#

#(2x^4+7)/(x^2-1)=2x^2+2+9/(x^2-1)#