How do you divide #2x^4 - x^3y + x^2y^2 + 4xy^3 - 4y^4 div 2x^2 + xy - 2y^2#?

1 Answer
Jun 27, 2016

#x^2 - x y + 2 y^2#

Explanation:

Calling

#N(x,y) = 2 x^4 - x^3 y + x^2 y^2 + 4 x y^3 - 4 y^4#
#D(x,y)=2 x^2 + x y - 2 y^2#

Dividing #N(x,y)# into #D(x,y)# will give a result #Q(x,y)# with maximum #x# coefficient equal #2# and maximum #y# coefficient equal #2#.
The remainder #R(x,y) # will have maximum #x# coefficient equal #1# and maximum #y# coefficient equal #1#. So

#Q(x,y) = sum_{i=0,j=0}^{i=2,j=2}q_{ij}x^i y^j#

and

#R(x,y) = r_{11}x y + r_{10}x+r_{01}y+r_{00}#

Expanding

#N(x,y)=D(x,y)Q(x,y)+R(x,y)#

and equating the coefficients we have (I am considering only nontrivial relationships)

#{ ( -4 + 2 q_{02}=0), (-q_{00} - r_{11}=0),( -q_{01} + 2 q_{10}=0), (4 - q_{02} + 2 q_{11}=0), (-2 q_{01} - q_{10}=0), (1 - 2 q_{02} - q_{11} + 2 q_{20}=0), (-q_{12} + 2 q_{21}=0), (-1 - 2 q_{11} - q_{20}=0), (-2 q_{12} - q_{21}=0), (2 - 2 q_{20}=0) :}#

solving we have

#q_{02}=1,q_{11}=-1,q_{20}=1# and all others nulls. So the result is

#(N(x,y))/(D(x,y))=x^2 - x y + 2 y^2#