How do you divide #(6b^3+28b^2+25b-21)div(b+3)# using synthetic division?

1 Answer
Feb 21, 2017

The quotient is #=6b^2+10b-5# and the remainder is #=-6#

Explanation:

We perform the synthetic division

#color(white)(aaaa)##-3##color(white)(aaaa)##|##color(white)(aaaa)##6##color(white)(aaaa)##28##color(white)(aaaaa)##25##color(white)(aaa)##-21#

#color(white)(aaaaaa)##color(white)(aaaaa)##|##color(white)(aaaaa)##color(white)(aa)##-18##color(white)(aaaa)##-30##color(white)(aaaa)##15#

#color(white)(aaaaaaaaaa)#------------------------------------------------------------

#color(white)(aaaa)##color(white)(aaaaaa)##color(white)(aaaaaa)##6##color(white)(aaaa)##10##color(white)(aaaa)##-5##color(white)(aaaa)##color(red)(-6)#

The remainder is #=-6#

The quotient is #=6b^2+10b-5#