How do you divide #x^2-4x-3# by #x+5#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Shell Dec 23, 2016 #x+1 +2/(x+5)# Explanation: Divide #x^2-4x-3# by #x+5#. #color(white)(aaaaaaaaaa^1a)x+1 +2/(x+5)# #color(white)(aaaaa)----------# #x-5 | color(white)ax^2-4x-3# #color(white)(aa^2a)-(x^2-5x)color(white)(a)darr# #color(white)(aaaaaa)----# #color(white)(aaaaaaaaaaaa)x-3# #color(white)(aaaaaaaaa)-(x-5)# #color(white)(aaaaaaaaa)----# #color(white)(aaaaaaaa^2aaaaaaa)2# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1814 views around the world You can reuse this answer Creative Commons License