#x^4-8x^2+16 =color(blue)1x^4color(blue)(+0)x^3color(blue)(-8)x^2color(blue)(+0)x^1color(blue)(+16)x^0#
To divide by #(x+2)# we perform synthetic substitution with #x=color(magenta)(""(-2))#
#{:
(,color(white)("xxx"),color(grey)(x^4),color(grey)(x^3),color(grey)(x^2),color(grey)(x^1),color(grey)(x^0),color(white)("xxx"),"row 0"),
(,,color(blue)1,color(blue)(+0),color(blue)(-8),color(blue)(+0),color(blue)(+16),,"row 1"),
(ul(color(white)("xx")+),,ul(color(white)("xxx")),ul(-2),ul(+4),ul(+8),ul(-16),,"row 2"),
(xxcolor(magenta)(""(-2)),,color(red)(1),color(red)(-2),color(red)(-4),color(red)(+8),color(white)("xx")color(green)0,,"row 4"),
(,,color(grey)(x^3),color(grey)(x^2),color(grey)(x^1),color(grey)(x^0),color(grey)("Rem."),,)
:}#
The values for each column for row 4 are the sum of the values in rows 2 and 3 for that column.
The values for each column of row 3 are the product of #color(magenta)(""(-2))# and the value in row 4 of the previous column.