How do you divide # (x^5 + y^5) /(x + y)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Konstantinos Michailidis Mar 7, 2016 For #n# odd integer the following identity holds #x^n + y^n = (x + y)(x^{n-1} - x^{n-2}y + \cdots - xy^{n-2} + y^{n-1} )# or #[x^n + y^n]/[x+y]=(x^{n-1} - x^{n-2}y + \cdots - xy^{n-2} + y^{n-1} )# Hence for our case we have that #[x^5+y^5]/[x+y]=x^4-x^3 y+x^2 y^2-x y^3+y^4# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 26744 views around the world You can reuse this answer Creative Commons License