How do you divide #(x^m - 1) / (x - 1)#?

1 Answer
May 20, 2016

If #m# is a positive integer, then:

#(x^m-1)/(x-1) = x^(m-1)+x^(m-2)+...+x+1 = sum_(k=0)^(m-1) x^k#

Explanation:

Notice that if #m# is a positive integer, then:

#(x-1) sum_(k=0)^(m-1)x^k#

#= x sum_(k=0)^(m-1)x^k - sum_(k=0)^(m-1)x^k#

#= sum_(k=1)^m x^k - sum_(k=0)^(m-1) x^k#

#= x^m + color(red)(cancel(color(black)(sum_(k=1)^(m-1)x^k))) - color(red)(cancel(color(black)(sum_(k=1)^(m-1) x^k))) - 1#

#= x^m - 1#

Dividing both ends by #(x-1)# we find:

#sum_(k=0)^(m-1)x^k = (x^m-1)/(x-1)#