How do you evaluate 10^(4log_10 2)104log102?

1 Answer
Dec 20, 2016

10^(4 log_10 2) = 16104log102=16

Explanation:

By definition of log_10log10, for any t > 0t>0 we have:

10^(log_10 t) = t10log10t=t

Also note that for any a, ba,b we have:

10^(ab) = (10^a)^b10ab=(10a)b

So:

10^(4 log_10 2) = (10^(log_10 2))^4 = 2^4 = 16104log102=(10log102)4=24=16