How do you evaluate #arcsin(sin((7pi)/3))#?

1 Answer
Apr 13, 2016

#arcsin(sin((7pi)/3))=(pi/3)#

Explanation:

If #arcsinx=theta#

then #sintheta=x#.

Let #theta=((7pi)/3)# and #sin((7pi)/3)=x#

Then #arcsin(sin((7pi)/3))=arcsinx=theta=(7pi)/3#

However, in case of trigonometric ratios, for each #x#, their could be multiple vales of #theta# (such as #2npi+theta#) e.g. not only #sin((7pi)/3)=x#, but so is for #sin(pi/3)#, #sin(-5pi/3)#, #sin(13pi/3)# etc.

Hence, the range for #theta=arcsinx# is limited to #[-pi/2,pi/2]#

Hence #arcsin(sin((7pi)/3))=(pi/3)#