How do you evaluate arctan(-1/sqrt3)?

1 Answer
Jul 11, 2016

arctan(-1/sqrt3)=-pi/6.

Explanation:

Let arctan(-1/sqrt3)=theta, theta in (-pi/2,pi/2)

Then, by defn. of arctan fun, tantheta=-1/sqrt3 <0, so that theta !in (0,pi/2)

Now, tan(-pi/6)=-tan(pi/6)=-1/sqrt3, where, (-pi/6) in (-pi/2,0)

Thus, tan(-pi/6)=-1/sqrt3=tantheta, and, tan fun. is injective i.e., 1-1 in (-pi/2,0), we conclude that theta=arctan(-1/sqrt3)=-pi/6.