How do you evaluate cos^-1(cos((7pi)/6))cos1(cos(7π6))?

2 Answers
Aug 7, 2016

=(7pi)/6=7π6

Explanation:

cos^-1(cos((7pi)/6))cos1(cos(7π6))
=(7pi)/6=7π6

Aug 7, 2016

5pi/65π6.

Explanation:

cos^-1(cos(7pi/6))=cos^-1(cos(pi+pi/6))cos1(cos(7π6))=cos1(cos(π+π6))

But, (cos(pi+theta)=-costheta(cos(π+θ)=cosθ

:. Reqd. Value=cos^-1(-cos(pi/6))=cos^-1(-sqrt3/2)

Since, cos^-1(-x)=pi-cos^-1x, AA |x|<=1.

The Reqd. value=pi-cos^-1(sqrt3/2)=pi-pi/6

=5pi/6.